SS Soft tissue & bone pathology

Unusual tumors of bone & soft tissue or uncommon presentation of common ones

Case #6

Abbas Agaimy, MD
Institut für Pathologie
Universität Erlangen
Germany
abbas.agaimy@uk-erlangen.de
Disclosure Information

I hereby declare that I have had business or personal interests in the following industrial enterprises since 1 September 2017:

Name of the enterprise / Nature of the interest

Enterprise | Interest
No disclosures.
Clinical history

- A subcutaneous nodule 2.5x2x1.5 was excised from the back of a 12 yo boy.

- No other information or clinical history.
DDx based on stromal pattern

- Myxoid nerve sheath tumor (myxoid epithelioid MPNST).
- Myxoid myoepithelial neoplasm.
- Extraskeletal myxoid chondrosarcoma.
- Low-grade fibromyxoid sarcoma.
- Myxofibrosarcoma
- Myxoid liposarcoma
- Myxoid epithelioid sarcoma
- **Myxoid variant of any entity**
DDx based on cytology

- Myxoid epithelioid MPNST with rhabdoid features.
- Myxoid myoepithelial neoplasm with rhabdoid features
- Myxoid epithelioid sarcoma with rhabdoid pattern
- Myxoid variant of rhabdoid neoplasm
Approach to DDx
Assess:

- **Vascular pattern**: almost avascular stroma
- **Arrangement/architecture**: reticular/chordoid
- **Cytology**: uniformly rhabdoid
- **Nuclear atypia**: enlarged atypical vesicular nuclei
DDx: Absence of curvilinear/arborizing vasculature

- Myxoid nerve sheath tumor (myxoid epithelioid MPNST).
- Myxoid myoepithelial neoplasm
- Extraskeletal myxoid chondrosarcoma.
- Low-grade fibromyxoid sarcoma
- Myxofibrosarcoma
- Myxoid liposarcoma
- Myxoid epithelioid sarcoma
- Myxoid variant of
Based on uniform rhabdoid cytology: Does SMARCB1 loss help?
Based on uniform rhabdoid cytology: Does SMARCB1 loss help?

SMARCB1 lost in all of the neoplastic cells
Based on uniform rhabdoid cytology: Does SMARCB1 loss help?

- Myxoid epithelioid MPNST: 50% loss
- Myxoid myoepithelial neoplasm: 10-40% loss
- Extraskeletal myxoid chondrosarcoma: 20%
- Low-grade fibromyxoid sarcoma
- Myxofibrosarcoma
- Myxoid liposarcoma
- Myxoid epithelioid sarcoma: 100%
- Myxoid variant of
Epithelioid MPNST: myxoid variant: strongly S100+/SOX10+
Both neg in the current case
Myxoid variant of epithelioid sarcoma

- Pure myxoid variant rare.
- IHC: CK/EMA pos in almost all cases.
- CA125+
- CD34: 50%.
- Others

All neg in the current case
extraskeletal myxoid chondrosarcoma

- S100+
- CD117+
- EWSR1-NR4A3 fusion
Based on uniform rhabdoid cytology: Does SMARCB1 loss help?

- Myxoid epithelioid MPNST: 50% loss
- **Myxoid myoepithelial neoplasm:** 10-40% loss
- Extraskeletal myxoid chondrosarcoma: 20%
- Low-grade fibromyxoid sarcoma
- Myxofibrosarcoma
- Myxoid liposarcoma
- Myxoid epithelioid sarcoma: 100%
- **Myxoid variant of „I don´t knowma“?**
Myxoid myoepithelial neoplasm: example from extremity
Myxoid myoepithelial neoplasm: example from extremity
Plasmacytoid (hyaline cell) myoepithelioma: finger
Our case
TABLE 2. Anatomic Distribution of 101 Myoepithelial Tumors of Soft Tissue

<table>
<thead>
<tr>
<th>Anatomic Location</th>
<th>No. of Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower limb/limb girdle</td>
<td>41</td>
</tr>
<tr>
<td>Groin/inguinal area</td>
<td>8</td>
</tr>
<tr>
<td>Buttock</td>
<td>5</td>
</tr>
<tr>
<td>Thigh</td>
<td>11</td>
</tr>
<tr>
<td>Knee/popliteal area</td>
<td>2</td>
</tr>
<tr>
<td>Lower leg</td>
<td>4</td>
</tr>
<tr>
<td>Ankle</td>
<td>1</td>
</tr>
<tr>
<td>Foot</td>
<td>5</td>
</tr>
<tr>
<td>Toe</td>
<td>5</td>
</tr>
<tr>
<td>Upper limb/limb girdle</td>
<td>35</td>
</tr>
<tr>
<td>Shoulder</td>
<td>6</td>
</tr>
<tr>
<td>Axilla</td>
<td>3</td>
</tr>
<tr>
<td>Upper arm</td>
<td>3</td>
</tr>
<tr>
<td>Elbow</td>
<td>3</td>
</tr>
<tr>
<td>Forearm</td>
<td>7</td>
</tr>
<tr>
<td>Wrist</td>
<td>5</td>
</tr>
<tr>
<td>Hand</td>
<td>5</td>
</tr>
<tr>
<td>Finger</td>
<td>3</td>
</tr>
<tr>
<td>Head and neck</td>
<td>15</td>
</tr>
<tr>
<td>Scalp</td>
<td>5</td>
</tr>
<tr>
<td>Face</td>
<td>1</td>
</tr>
<tr>
<td>Neck</td>
<td>7</td>
</tr>
<tr>
<td>Supraclavicular area</td>
<td>2</td>
</tr>
<tr>
<td>Trunk</td>
<td>10</td>
</tr>
<tr>
<td>Back</td>
<td>4</td>
</tr>
<tr>
<td>Chest wall</td>
<td>3</td>
</tr>
<tr>
<td>Abdominal wall</td>
<td>2</td>
</tr>
<tr>
<td>Retroperitoneum</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>101</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Marker</th>
<th>% positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>CK or EMA</td>
<td>100%</td>
</tr>
<tr>
<td>S100</td>
<td>87%</td>
</tr>
<tr>
<td>Calponin</td>
<td>86%</td>
</tr>
<tr>
<td>GFAP</td>
<td>46%</td>
</tr>
<tr>
<td>SMA</td>
<td>36%</td>
</tr>
<tr>
<td>p63</td>
<td>23%</td>
</tr>
<tr>
<td>Desmin</td>
<td>14%</td>
</tr>
</tbody>
</table>

All negative in our case

Myoepithelial Tumors of Soft Tissue: A Clinicopathologic and Immunohistochemical Study of 101 Cases With Evaluation of Prognostic Parameters

Jason L. Hornick, MD, PhD, and Christopher D. M. Fletcher, MD, FRCPath

Universitätsklinikum Erlangen
Rhabdoid Variant of Myoepithelial Carcinoma, with EWSR1 Rearrangement: Expanding the Spectrum of EWSR1-Rearranged Myoepithelial Tumors

Khin Thway · Nick Bown · Aisha Miah · Rob Turner · Cyril Fisher

+ve: EMA, SMA, calponin, S100
INI1 lost
FISH: unbalanced EWSR1
RT-PCR neg.
Current case highly similar cytologically to Fisher et al case (myxoid variant of same tumor?) but:
lacked myoepithelial marker expression totally
My suggested diagnosis:

Myxoid soft tissue neoplasm with prominent rhabdoid cell features lacking any line of Differentiation (vimentin-only phenotype).

- Myxoid myoepithelial carcinoma, rhabdoid variant?
- Pediatric malignant rhabdoid tumor, myxoid variant?
SMARCB1 loss in myxoid soft tissue neoplasms: Help or problem?

- Epithelioid MPNST: **50%** (occasionally very myxoid)
- Myoepithelial carcinoma: **10-40%** (frequently myxoid)
- Extraskeletal myxoid chondrosarcoma: **20%**
- Epithelioid sarcoma: **100%** (only rarely very myxoid)
- Malignant rhabdoid tumor: **98%** (only rarely very myxoid)
- Other EWSR1-CREB family tumors.
<table>
<thead>
<tr>
<th>Ref</th>
<th>Translocation</th>
<th>Fusion gene</th>
<th>Morphology</th>
<th>IHC</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT1 fusion</td>
<td>Desmoplastic small round cell tumour</td>
<td>5 t(11;22)(p13;q12)</td>
<td>EWSR1-WT1</td>
<td>Small round cells, cellular fibrous stroma</td>
</tr>
<tr>
<td>DDX3 (CHOP) fusion</td>
<td>Myxoid liposarcoma</td>
<td>8 t(12;22)(q13;q12)</td>
<td>EWSR1-DDX3</td>
<td>Spindle/polygonal cells myxoid stroma</td>
</tr>
<tr>
<td>NR4A3 fusion</td>
<td>Extraskelatal myxoid chondrosarcoma</td>
<td>14,53 t(9;22)(q22;q12)</td>
<td>EWSR1-NR4A3</td>
<td>Polygonal cells, myxoid stroma</td>
</tr>
<tr>
<td>CREB1 or ATF1 fusion</td>
<td>Angiomatoid fibrous histiocytoma</td>
<td>23,24 t(2;22)(q33;q12)</td>
<td>EWSR1-CREB1</td>
<td>Clear cells, Osteoclast-like giant cells</td>
</tr>
<tr>
<td>Clear cell sarcoma of soft tissue</td>
<td>25 t(12;22)(q13;q12)</td>
<td>EWSR1-CREB1</td>
<td>Clear cells, Osteoclast-like giant cells</td>
<td>S100pr+, melan-A -HMB45 –</td>
</tr>
<tr>
<td>Clear-cell sarcoma-like tumour of Gl tract</td>
<td>187 t(2;22)(q33;q12)</td>
<td>EWSR1-CREB1</td>
<td>Spindle cells, myxoid stroma</td>
<td>No specific markers</td>
</tr>
<tr>
<td>Primary pulmonary myxoid sarcoma</td>
<td>28 t(2;22)(q33;q12)</td>
<td>EWSR1-CREB1</td>
<td>Spindle cells, myxoid stroma</td>
<td>No specific markers</td>
</tr>
<tr>
<td>Myoepithelial tumour</td>
<td>145 t(12;22)(q13;q12)</td>
<td>EWSR1-ATF1</td>
<td>Epithelioid cell cords, chondromyxoid stroma</td>
<td>S100pr+, EMA+</td>
</tr>
<tr>
<td>Angiosarcoma</td>
<td>146 t(12;22)(q13;q12)</td>
<td>EWSR1-ATF1</td>
<td>Epithelioid and spindle cells</td>
<td>CD31+, FVIIIIRAg+, D2-40+</td>
</tr>
<tr>
<td>Hyalinising clear cell carcinoma of salivary gland</td>
<td>34,35 t(12;22)(q13;q12)</td>
<td>EWSR1-ATF1</td>
<td>Clear cells, hyalinised stroma</td>
<td>S100pr+</td>
</tr>
</tbody>
</table>
Primary Pulmonary Myxoid Sarcoma With EWSR1-CREB1 Fusion: A New Tumor Entity

Khin Thway, FRCPath,* Andrew G. Nicholson, DM, FRCPath,† Kay Lawson, MBBS,‡ David Gonzalez, PhD,§ Alexandra Rice, FRCPath,‡ Bonnie Balzer, MD,§ John Swansbury, FRCPath,∥ Toon Min, PhD,∥ Lisa Thompson, PhD,‡ Kwame Adu-Poku, FRCPath,¶ Anne Campbell, MD, FRCPath,# and Cyril Fisher, MD, DSc, FRCPath*

EWSR1 Fusions With CREB Family Transcription Factors Define a Novel Myxoid Mesenchymal Tumor With Predilection for Intracranial Location

Yu-Chien Kao, MD,*† Yun-Shao Sung, MSc,† Lei Zhang, MD,† Chun-Liang Chen, MSc,† Sumathi Vaiyapuri, MD,‡ Marc K. Rosenblum, MD,† and Cristina R. Antonescu, MD†

(Am J Surg Pathol 2017;41:482–490)
3 of 4 cases had no EWSR1 fusion by NGS but SMARCB1 loss

The case with EWSR1-CREB fusion had intact SMARCB1
Do SMARCB1 loss and EWSR1 gene fusions coexist? Or are they mutually exclusive?

Molecular and Clinicopathologic Heterogeneity of Intracranial Tumors Mimicking Extraskeletal Myxoid Chondrosarcoma

- 3 of 4 cases had no EWSR1 fusion by NGS but SMARCB1 loss
- The case with EWSR1-CREB fusion had intact SMARCB1
SMARCB1 & EWSR1 are located close to each other on chr 22q.

Four tumors with SMARCB1 loss examined by EWSR1 FISH. (1x epithelioid sarcoma, 1 malignant rhabdoid tumor, 1 myoepithelial carcinoma & 1 poorly diff chordoma).

2 showed unbalanced split signals (bona fide translocation)

2 showed heterozygous deletion mimicking unbalanced transloc.
Small round cell variant of malignant rhabdoid tumor closely mimicking Ewing sarcoma: false + EWSR1 FISH.
Thank you for your attention

It´s the phenotype, stupid!
(comment posted in Dr. David Page´s sign-out area;
(Juan Rosai, Ackermann´s Surgical Pathology)