Metabolomics Analysis Reveals Distinct Profiles of Non-Muscle Invasive and Muscle-Invasive Bladder Cancer

Donna E. Hansel, MD, PhD
Professor of Pathology
Chief, Division of Anatomic Pathology
University of California at San Diego
La Jolla, CA
@donnaehanselUCSD
Bladder cancer

• Affects >400,000 people every year worldwide
 — Male : female ratio steady at 3:1

• **Risk factors** include smoking, chronic inflammation, radiation, aromatic amines, arsenic, genetics, low fluid intake

• Due to risk of multifocality and recurrence, requires lifelong patient follow-up
 • In the US, is considered one of the most expensive diseases

• Treatment is strongly influenced by grade and stage of the disease
 • Bacillus Calmette-Guérin indicated for high-grade NMIBC
 • Radical cystectomy with or without neoadjuvant therapy for MIBC
 • Metastatic disease treated with standard chemotherapy (cisplatin, MVAC), immunotherapy
Normal urothelium

FGFR3
KRAS
PIK3CA

Early alterations
(UPUMP, dysplasia)

9q-/9p-
TP53
RB1
Other

10-15%

Frequent recurrence (70%)

40-60%
Metabolomics in pathway activity assessment

• Comprehensive metabolite signature as indicator of biological activity in cells or tissue

• Has been applied to many cancer types to identify enzymes that could be potential therapeutic targets
 • May or may not reflect gene changes, but can be mapped back onto genomic and mRNA alterations

• Two prior studies in bladder cancer tissue have compared benign to cancer

• Additional studies have been performed on urine and serum

• We have focused on a comparison between normal, non-muscle invasive high-grade urothelial ca and muscle-invasive high-grade urothelial ca, as these represent major cut points for type of therapy offered and patient outcomes
Methods

• Data was obtained from a combined cohort of patients from two institutions (CCF, UTSW) – matched demographics

• Limited analysis to patients with pure urothelial carcinoma at radical cystectomy
 • 72 patients
 • 24 of these patients had matched normal controls

• Use of gas chromatography-mass spectrometry (GC/MS) and liquid chromatography-mass spectrometry (LC/MS) to quantify metabolites in snap-frozen, annotated tissue through collaboration with Metabolon

• Used Wilcoxon rank sum test and Student’s t-test comparisons to compare metabolite levels; $P<0.05$ considered significant

• Comparison was performed between:
 • Normal versus cancer
 • Non-muscle invasive versus muscle-invasive cancer
Global changes identified in multiple key pathways

• Metabolomics analysis detected 1146 biochemicals, including 613 named and 533 unnamed LC compounds

• Benign and tumor tissue were compared using matched pairs from and 513 metabolites were found to be significantly altered (matched pair t-test, $P \leq 0.05$)

• We subsequently used the second cohort of samples to validate results, as well as to compare NMIBC (pTa-T1) and MIBC (pT2-T4)

• Differential findings between both cohorts largely held true

• Most key metabolic pathways in carcinoma progression affected
Glucose metabolism shows a shift to glycolysis and glycogen synthesis via sorbitol pathway activity

- Most cancers generate energy via aerobic glycolysis with glucose utilized for glycolysis rather than oxidative phosphorylation (Warburg effect)
- G6P intermediate also appears to shunt into pentose phosphate pathway as well

Glucose \rightarrow sorbitol \rightarrow fructose \rightarrow fructose-1-phosphate \rightarrow G3P \rightarrow **Glycolysis**
TCA cycle intermediates show increased late stage intermediates that may mean anaplerotic activity in cancer.
Lipid metabolism shows preferential formation of fatty acids, glycerophospholipids and sphingolipids.

Sphingolipid Pathway

- Sphingosine
- Sphingosine-1-P
- P-ethanolamine
- Ceramide
- Sphingomyelin
- Sphinganine

Cell membranes

Lipid Signaling

- Scaled Intensity
- (stearoyl form)
Additional metabolic differences evident in benign versus neoplastic categories

- Amino acid metabolism is elevated, further supporting a potential anaplerotic mechanism in bladder cancer and association with p53 function
 - Most amino acids were elevated
 - May reflect increased protein breakdown OR uptake

- Purine/pyrimidine metabolism displays enhanced production of deoxy-nucleotides and derivation of purine from de novo synthesis and catabolism
 - Both purine and pyrimidine metabolites were upregulated
 - Both de novo synthesis and synthesis from catabolic processes occurs
Energy status in bladder cancer

• Glycolysis is enhanced in cancer and increases glucose uptake, lactate production, increased citrate for the TCA cycle, and increased activity of the pentose phosphate pathway
 • This provides energy, fatty acids, nucleotide biosynthesis, and NADPH generation in the context of cancer growth
 • Many components of the glucose metabolomics pathway can be regulated by activity of p53

• Anaplerosis likely also replenishes TCA cycle intermediates
 • Process by which TCA cycle intermediates are formed from substrates such as amino acids and fatty acids
 • May be a complementary mechanism to enhance the TCA cycle

• Higher proliferative capacity in malignant cells is likely fueled through glucose and TCA cycle intermediate catabolism
Lipid metabolism in bladder cancer

• Elevation of virtually every form of lipid within malignant cells
 • Can be utilized for membrane components, energy sources, biochemical precursors, and signaling molecules in cancer cells
 • One possible explanation of elevated fatty acid levels in bladder cancer is that increased biosynthesis of fatty acids may be derived from citrate, which is elevated in bladder cancer
 • A second explanation may be increased rates of lipid membrane turnover and membrane remodeling in bladder cancer cells caused by increased proliferation or inflammation may produce higher fatty acid levels

• Decreased palmitoyl and stearoyl sphingomyelin could result from an increase in microvesicle formation
 • Reported to play critical roles in tumor biology such as carrying RNA, proteins and signaling molecules
Increases in a subset of prostaglandin and thromboxane subtypes occur in MIBC

- linoleate → linolenate → dihomo-linolenate → PGE\textsubscript{1}
- 5-HETE
- 15-HETE
- arachidonate
- PGH\textsubscript{2}
- Prostacyclin (PGI\textsubscript{2})
- PGE\textsubscript{1} → PGD\textsubscript{2}
- Thromboxane B2
- PGE\textsubscript{2}
Two additional major pathways uniquely altered between NMIBC and MIBC

• Muscle-invasive bladder cancer derives NAD+ from tryptophan rather than through the salvage pathway
 • Inflammatory cells may influence this pathway and are the subject of future study (most patients BCG naïve)
 • Prior studies have shown that cancers are highly dependent upon NAD+ for both energy (Warburg metabolism) and for DNA repair by functioning as a cofactor for the DNA repair enzyme PARP

• Hemoglobin catabolites are increased in muscle-invasive bladder cancer
 • Hemoglobin catabolites bilirubin and biliverdin were significantly higher in muscle-invasive tumors
 • Heme oxygenase-1 is upregulated in cancer and mediates oncogenic factors such as MMPs, VEGF-A, COX2 and can play an important role in cell proliferation and angiogenesis
Conclusions

• Metabolomics may be useful to identify biological changes in cancer and in progressive disease

• Energy and lipid metabolism are commonly altered in bladder cancer, with additional changes in cyclooxygenase and lipoxygenase metabolites with MIBC

• Gene alterations, when present, reflect the directional change of the metabolite-generating enzyme

• Our data supports that of other early studies in bladder cancer metabolomics and expands the spectrum of findings

• Additional research to identify the stability of these changes in samples and the pervasiveness of these changes with stage are critical to apply this data to potential targeted therapeutics
Acknowledgments

UC San Diego
Divya Sahu, PhD
Debashis Sahoo, PhD

Metabolon
Bruce Neri, PhD
Bryan Wittman, PhD

UT Southwestern
Yair Lotan, MD

Grant support:
CTSA KL2 (Hansel)
Prevent Cancer Foundation (Sahu)